Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency
نویسندگان
چکیده
Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology.
منابع مشابه
Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes.
Iron-sulfur clusters (ISCs) are important prosthetic groups that define the functions of many proteins. Proteins with ISCs (called iron-sulfur or Fe-S proteins) are present in mitochondria, the cytosol, the endoplasmic reticulum and the nucleus. They participate in various biological pathways including oxidative phosphorylation (OXPHOS), the citric acid cycle, iron homeostasis, heme biosynthesi...
متن کاملClinical, biochemical, and genetic spectrum of seven patients with NFU1 deficiency
Disorders of the mitochondrial energy metabolism are clinically and genetically heterogeneous. An increasingly recognized subgroup is caused by defective mitochondrial iron-sulfur (Fe-S) cluster biosynthesis, with defects in 13 genes being linked to human disease to date. Mutations in three of them, NFU1, BOLA3, and IBA57, affect the assembly of mitochondrial [4Fe-4S] proteins leading to an imp...
متن کاملThe Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria.
Formation of iron/sulfur (Fe/S) clusters, protein translocation and protein folding are essential processes in the mitochondria of Saccharomyces cerevisiae. In a systematic approach to characterize essential proteins involved in these processes, we identified a novel essential protein of the mitochondrial matrix, which is highly conserved from yeast to human and which we termed Isd11. Depletion...
متن کاملLoss-of-function mutations in ISCA2 disrupt 4Fe-4S cluster machinery and cause a fatal leukodystrophy with hyperglycinemia and mtDNA depletion.
Iron-sulfur (Fe-S) clusters are essential cofactors for proteins that participate in fundamental cellular processes including metabolism, DNA replication and repair, transcriptional regulation, and the mitochondrial electron transport chain (ETC). ISCA2 plays a role in the biogenesis of Fe-S clusters and a recent report described subjects displaying infantile-onset leukodystrophy due to bi-alle...
متن کاملMammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols.
Friedreich's ataxia is a severe neurodegenerative disease caused by the decreased expression of frataxin, a mitochondrial protein that stimulates iron-sulfur (Fe-S) cluster biogenesis. In mammals, the primary steps of Fe-S cluster assembly are performed by the NFS1-ISD11-ISCU complex via the formation of a persulfide intermediate on NFS1. Here we show that frataxin modulates the reactivity of N...
متن کامل